81 research outputs found

    Statistical analysis of different mathematical models for stress-strain curves of AISI 321 stainless steel

    Get PDF
    This paper presents statistical analysis of data obtained by uniaxial tensile testing of AISI 321 stainless steel. This data is required as material input in numerical software, such as Abaqus, Ansys, MSC Marc, Nastran, etc. This data can be provided in the software as a set of points (piecewise linear model) that is cumbersome to enter, or it can be provided as a mathematical model, in the case of which the Finite Element Method (FEM) software calculates desired points directly from the mathematical model. Various mathematical models can be used to approximate tensile test data depending on the material loading state (linear, elasto-plastic, plastic). In this paper, the same uniaxial test data is analyzed, and curve fitting parameters are shown for each mathematical model

    Statistical analysis of different mathematical models for stress-strain curves of AISI 321 stainless steel

    Get PDF
    This paper presents statistical analysis of data obtained by uniaxial tensile testing of AISI 321 stainless steel. This data is required as material input in numerical software, such as Abaqus, Ansys, MSC Marc, Nastran, etc. This data can be provided in the software as a set of points (piecewise linear model) that is cumbersome to enter, or it can be provided as a mathematical model, in the case of which the Finite Element Method (FEM) software calculates desired points directly from the mathematical model. Various mathematical models can be used to approximate tensile test data depending on the material loading state (linear, elasto-plastic, plastic). In this paper, the same uniaxial test data is analyzed, and curve fitting parameters are shown for each mathematical model

    Effect of spring-back in v-tool bending of high-strength steel sheet metal plates

    Get PDF
    This paper deals with the effects of technological parameters used in the V-die bending process, on the obtained product properties and dimensions. By variation of the tool geometry, several cases of steel sheet bending process are observed through the FEM simulations. Also by variation of different mechanical material properties, effects on product geometry are observed. Since the automobile manufacturers mostly use the high strength steel sheet metal plates, there is a need for the successful tool construction and optimization in order to produce quality products

    One Year Sustainability of Risk Factor Change from a 9-Week Workplace Intervention

    Get PDF
    We examined the effect of a 9-week diet and physical activity intervention provided in the workplace by a group education session where personal dietary and physical activity goals were proposed. Measurements of anthropometry, fasting blood lipids, glucose and insulin, assays for antioxidant activity (AOA) and questionnaires were completed at 0, 3, 6, 9, and 12 weeks in 50 healthy workers (50% male, mean age 46y). Followup measurements in 39 (56% male) were possible at 52 weeks. At week 3 a group dietary and physical activity “motivational seminar” was held. At week 6, half the group were supplied daily kiwifruit for 3 weeks with cross over at week 9 until week 12. Compared to baseline, lipid, glucose, insulin and AOA measurements were improved at 12 and 52 weeks. Body measurements did not change. Group diet and physical activity advice reinforced over 9 weeks is associated with a sustained improvement in cardiovascular risk factors at 52 weeks

    Quantifying the Dynamics of Coupled Networks of Switches and Oscillators

    Get PDF
    Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems

    The impact of inflammation on bone mass in children

    Get PDF
    Bone is a dynamic tissue. Skeletal bone integrity is maintained through bone modeling and remodeling. The mechanisms underlying this bone mass regulation are complex and interrelated. An imbalance in the regulation of bone remodeling through bone resorption and bone formation results in bone loss. Chronic inflammation influences bone mass regulation. Inflammation-related bone disorders share many common mechanisms of bone loss. These mechanisms are ultimately mediated through the uncoupling of bone remodeling. Cachexia, physical inactivity, pro-inflammatory cytokines, as well as iatrogenic factors related to effects of immunosuppression are some of the common mechanisms. Recently, cytokine signaling through the central nervous system has been investigated for its potential role in bone mass dysregulation in inflammatory conditions. Growing research on the molecular mechanisms involved in inflammation-induced bone loss may lead to more selective therapeutic targeting of these pathological signaling pathways

    Low-Cost High-Fidelity Anaesthetic Simulation

    No full text
    corecore